Observation of the New κ^2 C,O: κ^2 C',O' Coordination Mode of 1,1,2,2-Tetraacetylethanato Ligand in a Dinuclear 1,1,1,5,5,5-Hexafluoroacetylacetonato Palladium(II) Complex

Yutaka Fukuda,*1 Maiko Sakumoto, 1 Yoshiaki Tanabe, 2 Youichi Ishii, 2 Wakako Suzuki, 1 and Akiko Nakao 1 Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610 2 Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551

(Received May 29, 2006; CL-060620; E-mail: fukuda@cc.ocha.ac.jp)

We have isolated a new dinuclear palladium(II) complex containing 1,1,2,2-tetraacetylethanato (taet) and 1,1,1,5,5,5-hexafluoroacetylacetonato (hfac) ligands, [(hfac)Pd(C,O-taet)-Pd(hfac)] (**2b**), whose crystallographic study has revealed that taet is coordinated to each palladium center as a κ^2 C,O ligand to form a five-membered chelate ring. Complex **2b** provides the first example of the κ^2 C,O: κ^2 C',O' coordination mode of β -diketonato ligand, which slowly tautomerizes to [(hfac)Pd-(O,O-taet)Pd(hfac)] (**2a**).

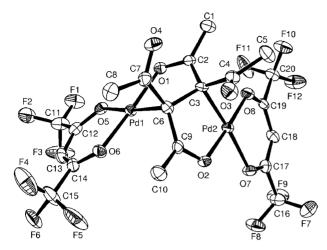
So far, various coordination modes of β -diketonato (abbreviated as dike) ligands in binary metal complexes, [M(dike)_n] (where the oxidation state of the metal ion is +2 or +3 and n=2 or 3, respectively), have been reported as O and/or C donor sets (Figure 1).^{1–8} Among them, complexes with a soft metal ion such as platinum(II) or palladium(II) can sometimes form C-bonded complexes.

In the extended work dealing with these β -diketonato ligands, a branched 1,1,2,2-tetraketonato (teke) ligand (bis(β -diketonato), a tetradentate bridging ligand) has been reported to form the mixed-ligand dinuclear complexes with a bidentate ligand (L), [(L)M(teke)M(L)]X_n, where M = Cu(II), Ni(II), or Pd(II), and L = N,N,N',N'-tetramethylethylenediamine, 2,2'-bipyridine, or 1,10-phenanthroline. In these complexes, the bridging teke ligand coordinates to the metal center through the O,O-donor set. ^{10,11} For the synthesis of this type of complexes, 1,1,2,2-tetraacetylethanate (taet; H₂taet shown in Figure 2) has been used most extensively.

In this study, we have succeeded in isolating a new type of mixed-ligand dinuclear palladium(II) complex containing taet and 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac) ligands, whose crystal structure revealed that each palladium(II) metal center has a four-coordinate square-planar coordination and contains a metal–carbon bond (Pd–C).

Figure 1. Coordination modes of β -diketonato ligand.

Figure 2. Structure of 1,1,2,2-tetraacetylethane (H₂taet).


 H_2 taet was prepared from the coupling reaction of Na(acac) (Hacac = acetylacetone) and I_2 in dioxane. ¹² When H_2 taet was added to a CH_2Cl_2 solution of methoxo-bridged dinuclear complex [(hfac)Pd(OMe)₂Pd(hfac)] (1)¹³ in the ratio of 1:1 at room temperature, a mixture of the O,O-taet dinuclear complex, [Pd₂(O,O-taet)(hfac)₂] (2a, Figure 3, Type A), ¹⁴ and the C,O-taet one, [Pd₂(C,O-taet)(hfac)₂] (2b, Figure 3, Type B), was obtained. These two isomers were further separated by silica-gel column chromatography (Wako-gel C300, ϕ 3 cm column, solvent: CH_2Cl_2), and red crystals of 2b were isolated as a minor product (yield: less than 1%), while orange crystals of 2a were obtained as the major product (yield: 80%).

Complex **2b** exhibits ¹H NMR signals at 2.46 and 2.51 ppm due to the CH₃ protons of the *C*,*O*-taet ligand and at 6.32 ppm due to the –CH= protons of the hfac ligands, while the *O*,*O*-taet isomer **2a** shows ¹H NMR signals at 2.01 and 6.26 ppm assignable to the CH₃ protons of *O*,*O*-taet and –CH= of hfac, respectively. In the ¹³C NMR spectrum the central carbon atoms of the *C*,*O*-taet ligand in **2b** resonate at 74.8 ppm, which suggests that these carbons are sp³ hybridized and bonded to the palladium atoms. This makes a striking contrast to that of **2a** which shows

Type A; O,O-taet coordination mode

Type B; C,O-taet coordination mode

Figure 3. Structures of the dinuclear palladium(II) complexes with tetraacetylethanate.

Figure 4. An ORTEP drawing of $[Pd_2(C,O-\text{taet})(\text{hfac})_2]$ with the thermal ellipsoids at 50% probability level. Selected bond distances and angles: Pd(1)-O(1), 2.004(2); Pd(1)-O(5), 2.077(2); Pd(1)-O(6), 1.994(2); Pd(1)-C(6), 2.061(3); Pd(2)-O(2), 1.993(2); Pd(2)-O(7), 2.057(3); Pd(2)-O(8), 2.004(2); Pd(2)-C(3), 2.055(4); O(1)-C(2), 1.264(4); O(2)-C(9), 1.267(5); C(2)-C(3), 1.473(5); C(3)-C(6), 1.544(5); C(6)-C(9), 1.461(5) Å; O(1)-Pd(1)-O(5), 91.1(1); O(1)-Pd(1)-O(6), 174.1(1); O(1)-Pd(1)-C(6), 82.0(1); O(5)-Pd(1)-O(6), 92.7(1); O(5)-Pd(1)-C(6), 173.1(1); O(6)-Pd(1)-C(6), 94.2(1); O(2)-Pd(2)-O(7), 91.1(1); O(2)-Pd(2)-O(8), 176.5(1); O(2)-Pd(2)-C(3), 81.6(1); O(7)-Pd(2)-O(8), 92.3(1); O(7)-Pd(2)-C(3), 172.7(1); O(8)-Pd(2)-C(3), $95.0(1)^\circ$.

the corresponding carbon resonance at 111.4 ppm due to its sp² hybridization. The ¹³C{¹H} NMR signals of the CF₃CO (116.1, 116.5; 173.4, 176.5 ppm) and CH₃CO carbons (28.8, 29.7; 194.4, 229.1 ppm) in **2b** appear as two distinct sets of peaks, also indicating the formation of the C,O-isomer. ¹⁵

Figure 4 shows the molecular structure of 2b, which has been determined by an X-ray analysis. 16 It is unambiguously confirmed that the taet ligand behaves as a κ^2 C,O: κ^2 C',O' bridging ligand to link two palladium atoms which adopt square-planar coordination structures. The Pd-C(taet) and Pd-O(taet) bond distances are 2.06 and 2.00 Å (mean), respectively. The Pd-O(hfac) bond distances are nonequivalent owing to the trans influence of taet, i.e., the bond lengths of the Pd-O(hfac) placed at the trans position of C-coordination (2.07 Å (mean)) are slightly longer than those at the trans position of O-coordination (2.00 Å (mean)). The dihedral angle between the coordination planes of the palladium atoms (Pd(1)-O(1)-O(5)-O(6)-C(6), Pd(2)-O(2)–O(7)–O(8)–C(3)) is $82.38(8)^{\circ}$. It is interesting to note that the central C-C bond length of taet in this C,O-isomer (C(3)-C(6): 1.544(5) Å) is longer than that of the O,O-isomer 2a reported previously (1.510(4) Å). In the former case both carbon atoms connected to the palladium(II) centers in the taet ligand are sp³ hybridized, while in the latter the sp² hybridized carbons contact with each other.

It is also noteworthy that the tautomerization takes place from **2b** to **2a**: the $\kappa^2 C, O: \kappa^2 C', O'$ -taet slowly isomerizes to the common $\kappa^2 O, O': \kappa^2 O'', O'''$ -taet in solution. When a CDCl₃ solution of **2b** was left at room temperature for one week, the ¹H NMR spectra showed that more than 50% of **2b** was trans-

formed into **2a**. This suggests that **2a** is actually the thermodynamically favored product, but **2b** has enough kinetic stability to be isolated at room temperature.

In conclusion, we have isolated a new dinuclear palladium(II) complex containing a bis(diketonato) ligand which is coordinated to each palladium center in a $\kappa^2 \text{C}, \text{O}: \kappa^2 \text{C}', \text{O}'$ fashion. This is the first example of such a coordination mode of tetraketonato ligand.

References and Notes

- S. Baba, T. Ogura, S. Kawaguchi, *Bull. Chem. Soc. Jpn.* 1974, 47, 665.
- Y. Otani, Y. Nakamura, S. Kawaguchi, S. Okeya, T. Hinomoto, Bull. Chem. Soc. Jpn. 1982, 55, 1467.
- 3 Z. Kanda, Y. Nakamura, S. Kawaguchi, *Inorg. Chem.* 1978, 17, 910.
- 4 S. Okeya, S. Kawaguchi, Inorg. Chem. 1977, 16, 1730.
- 5 S. Okeya, H. Sazaki, M. Ogita, T. Takemoto, Y. Onuki, Y. Nakamura, B. K. Mohapatra, S. Kawaguchi, *Bull. Chem. Soc. Jpn.* 1981, 54, 1978.
- S. Okeya, Y. Nakamura, S. Kawaguchi, *Bull. Chem. Soc. Jpn.* 1981, 54, 3396.
- 7 S. Matsumoto, S. Kawaguchi, *Bull. Chem. Soc. Jpn.* **1980**, 53, 1577.
- 8 S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura, S. Kawaguchi, *Bull. Chem. Soc. Jpn.* **1981**, *54*, 1085.
- 9 Several [(L)₂M(teke)M(L)₂]ⁿ⁺-type dinuclear complexes (L = bidentate ligand) have also been synthesized. a) Y. Fukuda, A. Seino, K. Mafune, H. Nakagawa, W. Linert, *J. Coord. Chem.* **1994**, *33*, 123. b) N. A. Lewis, W. Pan, *Inorg. Chem.* **1995**, *34*, 2244. c) Y. Zhang, S. Wang, G. D. Enright, S. R. Breeze, *J. Am. Chem. Soc.* **1998**, *120*, 9398. d) T. Koiwa, Y. Masuda, J. Shono, Y. Kawamoto, Y. Hoshino, T. Hashimoto, K. Natarajan, K. Shimizu, *Inorg. Chem.* **2004**, *43*, 6215.
- H. Kambayashi, Y. Masuda, Y. Fukuda, Chem. Lett. 1991, 303.
- 11 H. Kambayashi, J. Yuzurihara, Y. Masuda, H. Nakagawa, W. Linert, Y. Fukuda, Z. Naturforsch. 1995, 50b, 536.
- 12 R. G. Charles, Org. Synth. 1963, Coll. Vol. IV, 869.
- 13 A. R. Siedle, L. H. Pignolet, Inorg. Chem. 1982, 21, 3090.
- 14 Y. Kobayashi, N. Nagao, S. Okeya, Y. Fukuda, *Chem. Lett.* 1996, 663.
- 15 Spectral data for **2b**: 13 C{ 1 H} NMR (CDCl₃, ppm): 28.8, 29.7, 74.8, 92.6, 116.1 (q, $^{1}J_{CF} = 282$ Hz), 116.5 (q, $^{1}J_{CF} = 284$ Hz), 173.4 (q, $^{2}J_{CF} = 35$ Hz), 176.5 (q, $^{2}J_{CF} = 35$ Hz), 194.4, 229.1; IR (KBr, cm⁻¹): 1667, 1652, 1634, 1616, 1542, 1530, 1461, 1261, 1209, 1154, 791.
- 16 Crystallographic data for **2b** ($C_{20}H_{14}O_8F_{12}Pd_2$): fw 823.11, monoclinic, space group $P2_1/n$, a = 10.88(2), b = 11.03(2), c = 21.97(7) Å, $\beta = 101.98(5)^\circ$, V = 2579.1(12) Å³, Z = 4, T = -150 °C, $D_{calcd} = 2.120$ g cm⁻³, R_1 [$I > 2\sigma(I)$] (wR_2 [all data]) = 0.066 (0.072) for 394 variables, 6124 unique reflections ($R_{int} = 0.039$), GOF = 1.000. Crystallographic data reported in this manuscript have been deposited with CCDC (document number: CCDC-289612). Copies of the data can be obtained free of charge via www.ccdc.cam.uk/conts/retrieving.html.